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ABSTRACT 
 

We present a couple of traditional iterative strategies for unravelling straight comparisons; such routines are broadly 

utilized, particularly for the arrangement of substantial issues, for example, those emerging from the discrimination 

of direct fractional differential mathematical statements. We depict the iterative or backhanded systems, which 

begin from a rough guess to the genuine arrangement and if concurrent, infer a grouping of close estimates the cycle 

of reckonings being rehashed till the obliged precision is gotten. 
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I. INTRODUCTION 

 

In this chapter, we present a couple of traditional 

iterative strategies for unraveling straight comparisons; 

such routines are broadly utilized, particularly for the 

arrangement of substantial issues, for example, those 

emerging from the discrimination of direct fractional 

differential mathematical statements. We depict the 

iterative or backhanded systems, which begin from a 

rough guess to the genuine arrangement and if 

concurrent, infer a grouping of close estimates the cycle 

of reckonings being rehashed till the obliged precision is 

gotten. It implies that in iterative routines the measure of 

processing relies on upon the precision obliged and we 

have additionally talked about JACOBI and Gauss-

Seidel calculation with P-RAM and MPI Programming. 

 

II. METHODS AND MATERIAL 

 

A. Method Iteration 

 

Given a distributed algorithm, for each processor, there 

is a set of times at which the processor executes some 

computations, some other times at which the processor 

sends some messages to other processors, and yet some 

other times at which the processor receives messages 

from other processors[4]. The algorithm is termed 

synchronous, in the sense of the Preceding subsection, if 

it is mathematically equivalent to one for which the 

times of computation, message transmission, and 

message reception are fixed and given a priori. We say 

that the algorithm is asynchronous if these times can 

vary widely in two different executions of the algorithm 

with an attendant effect on the results of the computation 

[4]. The most extreme type of asynchronous algorithm is 

one that can tolerate changes in the problem data or in 

the distributed computing system, without restarting 

itself to some predetermined initials conditions. Iterative 

methods, also known as trial and error methods, are 

based on the ideas of successive approximation. They 

start with one or more initial approximation to the root 

and obtain a sequence of approximations by repeating a 

fixed sequence of steps till the solution with reasonable 

accuracy is obtained. Iterative methods, generally, give 

one root at a time. Iterative methods are very 

cumbersome and time-consuming for solving non-linear 

equations manually. However, they are best suited for 

use on computers, due to following reasons: 

 

 Iterative methods can be concisely expressed as 

computational algorithms. 

 It is possible to formulate, using trial and error, 

algorithms which tackle a class of similar problems. 

For instance a general computational algorithm to 

solve polynomial equations of order n (where n is an 

integer) may be written. 

 Routing errors are negligible in trial and error 

procedures compared to procedures based on closed 

form solutions. 

 

In computational mathematics an iterative method is a 

mathematical procedure that generates a sequence of 
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improving approximate solutions for a class of problems. 

A specific implementation of an iterative method, 

including the termination criteria, is an algorithm of the 

iterative method. An iterative method is called 

convergent if the corresponding sequence converges for 

given initial approximations. A mathematically rigorous 

convergence analysis of an iterative method is usually 

performed; however, heuristic-based iterative methods 

are also common. 

 

A method uses iteration if it yields successive 

approximations to a required value by repetition of a 

certain procedure.  

 

B. Iteration Steps 

 

An "iterative" process can be explained by the flowchart 

given in Fig. 1. There are four parts in the process, 

namely, initialization, decision, computation and update. 

The functions of the four parts are as follows: [7] 

1. Initialization: The parameters of the function and a 

decision parameter in this part are set to their initial 

values. The decision parameter is used to determine 

when to exit from the loop. 

2. Computation: The required computation is 

performed in this part. 

3. Decision: The decision parameter is to determine 

whether to remain in the loop. 

4. Update: The decision parameter is updated, and a 

transfer to the next iteration results. 

 

 

 

 

 

 

 

 

 

Figure: 1.1 Iteration Explain by flow chart [6 &7] 

Lemma 1: Iteration is geometry of nature and its 

represent to geometry progration. 

Proof:  for i = 1 to x 

  for j= 1 to x  

                         y  = x
2  

Where, x
2
 is representation of geometry progration. 

 

C. P-Ram Model 

 

The P-RAM model allows parallel algorithm designers 

to treated processing power as an unlimited resource, 

much as programmers of computers with virtual 

memory are allowed to treat memory as an unlimited 

resource. The P-RAM model is unrealistically simple; it 

ignores the complexity of interprocessor communication. 

Because communication complexity is not an issue, the 

designer of P-RAM algorithms can focus on the 

parallelism inherent in a particular computation. 

 

A P-RAM model consists of a control Unit, global 

memory, and an unbounded set of Processors, each with 

its own private memory (Fortune and Wyllie 1978) [25] 

(see figure: 1.1). Although active processors execute 

identical instructions, every processor has a unique 

index, and the value of a processor's index can be used 

to enable or disable the processor or influence which 

memory location it accesses. 

 

A P-RAM computation begins with the input stored in 

global memory and a single active processing element. 

During each step of the computation an active, enabled 

processor may read a value from a single private or 

global memory location, perform a single RAM 

operation, and write into one local or global memory 

location. All active, enabled processors must execute the 

same instruction, albeit on different memory location. 

The computation terminates when the last processors 

halts. 
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Figure: 1.2 Advance Representation of PRAM Model 

Explanation: Let xl, xp, xl be subsets of Euclidean 

spaces R
n

i,…., R
np

 respectively. Let n = nl +….. + np, and 

let x  R
n
 be the Cartesian product X = 

p
i=1Xi. 

Accordingly, any x  R
n 
is decomposed in the from x = 

(xi,…., x
p
), we write each xi belonging to R

n
i. For I 

1…..p, let fi :Xxi be a given function and let f : XX 

be the function defined by f(x) = (fi(x),……,fp(x)) for 

every x X. We want to solve the fixed - point problem 

x = f(x). To this end we will consider the iteration  

x: = f(x) 

 

We will also consider the more general iteration- 



 


otherwise

1

i

i

x

lifif
x                                        (1.1) 

 

Where i is a subset of the component index set {l,….., 

p}, which may change from one iteration to the next. 

Let the system be given by 

 

allxl + al2x2 + a13x3+………….+ alnxn = bl 

a2lxl + a22x2 + a23x3+…………+ a2nxn = b2 

a3lxl + a32x2 + a33x3+…………..+ a3nxn = b3 

   ………….. 

   ………….. 

anlxl + an2x2 + an3x3+………….. + annxn  bn                      (1.2) 

 

In which the diagonal elements aij do not vanish, if this 

is not the case, then the equation should be rearranged so 

that this condition is satisfied. 

Now we can rewrite the above systems as follow - 
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                                              (1.3) 

 

Now, we can write the above equation in the form of 

matrix. Let A be a n*n matrix, let b be a vector in R
n
, 

and consider the system of linear equations- 

Ax =b 

 

Where, x is an unknown vector to be determined. We 

assume that A is invertible, so that Ax =b has a unique 

solution. We write the i
th
 equation of the systems Ax = b 

as  




n

ij

ijij bxa  

Where aij are the entries of A; also, xj and bi are the 

components of x and b, respectively, we assume that aii 

 0 and solve for xi to obtain – 

  







 

ij

ijij

ij

i bxa
a

x
1

 

     (1.4) 

 

If all the components xj ,j  i, of the solution of Ax = b 

are known, the remaining component xi can be 

determined from Eq.(1.4). If instead some approximate 

estimates for the components xj, j  i, are available, then 

we can use Eq. (1.4) to obtain an estimate of xi. This can 

be done for each component of x simultaneously, 

leading to the following algorithm: 

 

o Iteration in Jacobi Algorithm 

 

In this, we start with some initial vector x(0)  R
n
, 

evaluate x(t), t = 1,2, ….. using the iteration - 

xi (t + 1) = 







 

ij

ijij

ii

btxa
a

)(
1

 (4.5) 

 

The Jacobi algorithm produces an infinite sequence {x(t)} 

of elements of R
n
. If this sequence converges to a limit x, 

then by taking the limit of both sides of Eq. (1.5) as i 
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tend to infinity, we see that x satisfies Eq. (1.4) for each 

i, which is equivalent to x being a solution of Ax = b of 

course; it is possible that the algorithm diverges. 

 

In the above algorithm, each component of x(t + 1) was 

evaluated based on Eq. (1.4) and the estimate x(t) of the 

solution. If this algorithm is executed on a serial 

computer, by the time that xi (t + 1) is evaluated, we 

already have available some new estimates xj (t + 1) for 

the components of x with index j smaller than i. It may 

be preferable to employ these new estimates of xj, j < i 

when updating xi. This leads to the next (gauss-seidel) 

algorithm. The above Jacobi method can be explained 

easily with this following example: 

 

Example: Find the solution, using Jacobi method to 

three decimals, of systems. 

83x + 11y - 4z = 95   (1) 

7x + 52y + 13z =104   (2) 

3x + 8y + 29z =7   (3) 

The above equation (1) can be written as follows; 

83x =95 - 11y + 4z 

x = 









83

11

83

95
 + (4/83)z  

xn+l = 
}41195{83

1

nn zy 
   (4) 

The equation (2) also may be written as follows: 

52y = 104 - 7x - 13z} 

yn+l = 
}137104{52

1

nn zx 
   (5) 

The equation (3) may be written are as follows: 

29z =71 - 3x - 8y 

zn+l = 
}8y - 3x - 29{71

1

nn

   (6) 

Now we take initial values of x, y and z, so take initial 

values; 

x0 = y0 = z0 = 0 

Now we calculate the first iteration: 

Iteration – I:   

xn+l =
}4z + 11y - 83{95

1

nn

   

 (4) 

Here n = 0, so 

xl =
0} * 4 + 0 * 11 - 83{95

1
 

     
83

95
  

xl =1.1445783 

yl = 1/52{104 - 7 * 0 - 13 * 0} 

52

104
  

=  2 

0} * 8 - 0 * 3 - 29{71

1
1 z  

= 71/29 

= 2.4482758 

 

Now we calculate the second iteration, in this we use the 

recent value of xl, yl and zl. 

 

Iteration – II:   

Then here n = 1, so 

x2 = 1/83{95 – 11yl + 4z1} 

    = 1/83{95 - 11 * 2 + 4 * 2.4482758} 

x2 =.9975072 

y2 =1/52{104 – 7x113z1} 

      

2.4482758} * 13 - 1.1445783* 7 - 52{104

1
  

= 1.2338532 

z2 =1/29{71 – 3xl – 8yl} 

=1/29{71 - 3 * 1.1445783 - 8 * 2} 

 =1.77814707 

 

Iteration – III:   

Here n =2 

x3 =1/83{95 – 11y2 + 4z2} 

      

}1.77814707 * 4 + 1.2338532 * 11 - 83{95

1
  

 = 1.0667494 

y3 =1/52{104 - 7xz - 13zz} 

   = 1/52{104 - 7 * .9975072 - 13 * 1.77814707} 

 = 1.4211834 

z3 =1/29{71 - 3xz - 8yz} 

 =1/29{71 - 3 * .9975072 - 8 * 1.2338532} 

   =2.0047121 

Now, the value of three x, y and z are repeated so we 

may stop. 

So, the value of x, y and z are as follows: 

x =1.057 

y =1.367 
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z =1.961 

 

Iteration – IV: 

Here n=3 

x4 =1/83{95 – 11y3 + 4z3} 

=1/83{95 - 11 * 1.4211834 + 4 * 

2.0047121} 

= 1.0528413 

y4 = 1/52{104 – 7x3 - 13z3} 

= 1/52{104 - 7 * 1.0667494 - 13 * 2.0047121} 

= 1.35522109 

z4 = 1/29{71 – 3x3 – 8y3} 

=1/29{71 - 3 * 1.0667494 - 8 * 1.4211834} 

= 1.9458718 

 

Iteration – V:   

Now n = 4 

xs =1/83{95 – 11y4 + 4z4} 

=1/83{95 - 11 * 1.35522109 + 4 * L9458718} 

=1.0587476 

y5 =1/52{l04 – 7x4 - 13z4} 

= 1/52{104 - 7 * 1.0528413 - 13 * 1.9458718} 

= 1.3718034 

z5 = 1/29{71 - 3x4 – 8y4} 

=1/29{71 - 3 * 1.0528413 - 8 * 1.35522109} 

= 1.9655071 

 

The pseudo-code of sequential Jacobi algorithm is as 

follows: [M.J. Quinn, 1994] 

Input 

 

n {size of linear system} 

 {convergence criterion} 

a[l ...n][l…..n] {coefficient of linear equation} 

b[l…..n] {constant associated with equation} 

Output 

x[l...n]{old Estimate of solution vector} 

Global 

new x[l...n] {new estimate of solution vector} 

diff{maximum change of any element of solution} 

i,j {loop indices} 

Begin 

{Estimate values of elements of x} 

for i  1 to n do 

x[j]  
a[i][i]

]1[b
 

end for 

{Refine estimates of x until value converge} 

do 

diff  a 

for i  1 to n do 

new x[i]  b[i] 

for j  1 to n do 

if j  then 

new x[i]  newx[i] - a[i] [j] * x[j] 

endif 

endfor 

newx[i] 
a[i][j]

newx[i] 
 

endfor 

for i  1 to n do 

diff  max (diff, [x[i] - newx[i]) 

x[i] newx[i] 

endfor 

while diff >  

end 

Hence, it is a sequential implementation of the Jacobi 

Algorithm. 

 

 

o Iteration in Gauss-Seidel Algorithm: 

Starting with some initial vector xe(0)  R
n
, evaluate 

x(t), t = 1,2, ... using the iteration- 

xi (t + 1) = - 









 

 ij ij

ijiijii btxatxa )()1(
aii

1
 (3) 

In above equation, we first update xl, then x2, etc. It is 

equally meaningful to start by updating xn, then xn-1 and 

proceed backwards, with xl being updated last. Any 

other order of updating is possible. Different orders of 

updating may produce substantially different results for 

the same system of equation. 

 

The pseudo-code of Sequential Gauss Seidel method is 

as follow: 

 

Sequential_GS 

input A, b, x
(0)

, tolerance 

for k = 0 to k_max do the following 

for i =1….., n 

sum = 0 

for j = 1,2,.... i - 1 

sum = sum + aij xj
k
 

end j 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

320 

xi
(k+l)

 = (bi - sum)/aii 

end i 

if x
(k+l)

 - x
(k)
< tolerance then output the solution, 

stop 

end k 

end Sequential_GS 

 

Hence, it is a sequential implementation of Gauss-Seidel 

method. 

 

D. Message Passing 

 

It is a concept from computer science, i.e. used 

extensively in the design and implementation of modern 

software applications. This concept is used with 

software and hardware both. Generally, message passing 

is the indication of passes message from n different 

nodes, by wired or wireless medium. Another words, it 

is a way of invoking behavior through some 

intermediary service or infrastructure of process. 

According to the concepts of this, when more then to 

autonomous machines, which are intermediary 

connected with each others, and passes bundles and 

packets through established channel or link this think is 

known as “Message Passing”.  

 

E. Discrete Vs Continuous Massege Passing 

 

We explain the discrete and continuous message passing, 

as follows: 

 Discrete Message Passing: It is possible for the 

receiving object to be busy or not running when the 

requesting object sends the message. It requires 

additional capabilities for storing and retransmitting 

data for systems that may not run concurrently. In 

this, all the capabilities that naturally occur when 

trying to synchronize system and data are handled 

by an intermediary level of software. With discrete 

message passing the sending system does not wait 

for a response. It simply sends the data bus and the 

buses stored the message and returns the result when 

it is available. 

 Continuous Message Passing: In this, message 

passing occurs between objects that are running at 

the same time. It based on typically object-oriented 

programming, such as: JAVA and Smalltalk. 

Message Passing: It is less complex; the sender 

sends a message and gets a response the same as 

simply invoking a function or procedure call. 

Continuous systems require the sender and receiver 

to wait for each other to transfer the message.  

 

III. RESULTS AND DISCUSSION 

 

A. Message Passing Models 

The message passing technologies have various types of 

modes. Either some are conceptual or some are practical. 

Here we explain several models of MPI as per my 

knowledge. 

 

 Mathematical Model: 

There are two prominent mathematical models of 

message passing, as: 

 

1. Actor model: This model was inspired by physics 

(include relativity and quantum physics). It was also 

influenced by the programming languages like as: 

LISP, Simula63 and Smalltalk[2]. Its development 

was "motivated by the prospect of highly parallel 

computing machines consisting of dozens, hundreds 

or even thousands of independent microprocessors, 

each with its own local memory and 

communications processor, communicating via a 

high-performance communications network [2].  

The actor model in computer science is a 

mathematical model of concurrent computation that 

treats "actors" as the universal primitives of 

concurrent computation, in response to a message 

that it receives; an actor can make local decisions, 

create more actors, send more messages, and 

determine how to respond to the next message 

received. The actor model originated in 1973 [1]. It 

has been used both as a framework for a theoretical 

understanding of computation and as the theoretical 

basis for several practical implementations of 

concurrent systems. An actor is a computational 

entity that, in response to a message it receives, can 

concurrently: 

 Send a finite number of messages to other actors. 

 Create a finite number of new actors. 

 Designate the behavior to be used for the next 

message it receives.  

 

There is no assumed sequence to the above actions 

and they could be carried out in parallel. The Actor 

model enabling asynchronous communication and 
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control structures as patterns of passing messages 

[3]. Recipients of messages are identified by address, 

sometimes called "mailing address". Thus an actor 

can only communicate with actors whose port 

addresses it has. The Actor model is characterized 

by inherent concurrency of computation within and 

among actors, dynamic creation of actors, inclusion 

of actor addresses in messages, and interaction only 

through direct asynchronous message passing with 

no restriction on message arrival order. 

2. Pi Calculus: In theoretical computer science, the π-

calculus (or pi-calculus) is a process calculus. The 

π-calculus allows channel names to be 

communicated along the channels themselves, and 

in this way it is able to describe concurrent 

computations whose network configuration may 

change during the computation[3]. The π-calculus is 

elegantly simple clarification is needed yet very 

expressive[1]. Functional programs can be encoded 

into the π-calculus, and the encoding emphasizes the 

dialogue nature of computation, drawing 

connections with game semantics. Extensions of the 

π-calculus, such as the π-calculus and applied π, 

have been successful in reasoning about 

cryptographic protocols.  

Definition: The π-calculus belongs to the family of 

process calculi, mathematical formalisms for 

describing and analyzing properties of concurrent 

computation. In fact, the π-calculus, like the λ-

calculus, is so minimal that it does not contain 

primitives such as numbers, Booleans, data 

structures, variables, functions, or even the usual 

control flow statements (such as if-then-else, while). 

 

 B. Parallel Processing Model For Distributed 

System 

In here, machine architecture represents the 

programming model, we explain figure 4.3 in our words. 

 Each processor Pi has its own memory and 

clock. 

 Local memory is not accessible by anywhere 

through the other processors. 

 All processors Pi are connected by a special 

physical medium i.e., either network of 

communication or other communication device 

which are available in present scenario. 

 
 

Figure: 1.3 Parallel MPI for Distributed System In 

architecture 

 

Data and information must be explicitly distributed by 

the programmer; Communication of processors (i.e., 

exchanging data’s in between processors) is achieved by 

MPI.  

 

According to above architecture we refers pseudo-code 

for adding two vector by OPEN MPI: 

 

Source code:  
#include “mpi.h” /* Include MPI header file */! 

int main (int argc, char **argv) 

{ 

int rnk, sz, n, I, info; 

double *x, *y, *buff; 

n = atoi (argv[1]);  /* Get input size */! 

/* Initialize threaded MPI environment */ 

MPI_Init_thread (&argc, &argv, MPI_THREAD_FUNNELED, &info); 

MPI_Comm_size(MPI_COMM_WORLD, &sz); /* Find out how many 

MPI procs */ 

chunk = n / sz; /* Assume sz divides n exactly */ 

MPI_Scatter(buff,chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0,MPI_

COMM_WORLD); 

MPI_Scatter(&buff[n],chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0,M

PI_COMM_WORLD); 

#pragma omp parallel for private(i,chunk) shared(x, y) 

for (i=0; i<chunk; i++) x[i] = x[i] + y[i];! 

MPI_Gather(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_

COMM_WORLD); 

MPI_Finalize();  

} 

 

B. Representation of Array Pattern of Processing 

Elements (P.E.): [5,8] 

 

Consider a case of three dimensional array patterns with 

n
3
 = 2

3q
 (Processing Elements) PEs [E.D. Dekel, 

Nassimi, S. Sabni, M.J. Quinn.]. Conceptually this PEs 

may be regarded as arranged, in n  n  n array pattern. 

If we assume that the PEs are row major order, the PE 

(i,j, k) in position (i,j, k) of this array has 2 index in
2
 + jn 

+ k (note that array indices are in the range [0, (n - 1)]. 

Hence, if r3q-l r0 is the binary representation of the PE 

position (i,j, k) then i = r3q-l…. rzq , j = rzq-l…. rq,k = rq-

l……. r0 using A(i,j, k), B(i,j, k) and C(i,j, k) to 

https://en.wikipedia.org/wiki/Concurrent_computation
https://en.wikipedia.org/wiki/Concurrent_computation
https://en.wikipedia.org/wiki/Game_semantics
https://en.wikipedia.org/wiki/Cryptographic_protocol
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represent memory locations in P(i,j, k), we can describe 

the initial condition for matrix multiplication as      A(0,j, 

k) = Ajk, B(0,j, k) = Bjk, 0 < = j < k,0 <= k < n Ajk and 

Bjk are the elements of the two matrices to be multiplied. 

The desired final configuration is C(0,j, k) = CU, k), 0 

<= j < n,0 <= k < n 

Where, 

Cjk = 




1

0

n

i

 AijBik ... ... ... ... ... ... ... ... ... ... 

The algorithm has three distinct phases. In the first, 

element of A & B are distributed over the n PEs so that 

we have A(l,), k) = A and B(l,j, k) = B. In the second 

phase the products C(l,j, k) = A(l,), k) * B(l,j, k) = AnBn 

are computed. Finally, in third phase the Cjk are 

computed. The details are spelled out in Dekel, Nassimi 

and Sahni 1981 [E.D. Dekel, Nassimi, S. Sabni,]. In this 

procedure all PE references are by PE index (Recall that 

the index of PE (i, j,k) as in + jn + k). 

 

 P-RAMf Asyncheonous System: [5,8]  

 
Begin (1) 

Repeat log n times do 

for all (ordered) pair (i,j, k), 0 < k ≤ n, 0 < i,j, k ≤ n and q = log n in 

parallel do 

a(22q i + 2qj + k) = a(i, j) 

a(22qi + zqj + k) = a(i, i) 

b(22qi + zqj + k) = b(i) 

end for 

for all (order)pair (i,), k), i < k < n, i > 0,j > i and q = log n 

x(j) = ]][[

][

iia

ib

 

end for 

[Refine estimates of x untill value converge] 

Repeat log n times do 

diff = 0 

for all (order)pair (i,), k), i < k < n, i > 0,j > i and q = log n 

new x[i] =b[i] 

for all (order)pair (i,), k), i < k < n, i > 0,j> i and q = log n 

if j  i then 

new [x] =new x[i] - a[i][j] * x[i] 

end if 

end for new x [i] = new ]][[

][

iia

ix

 

end for  

for all (order)pair (i,j, k), i < k < n, i > 0,j > i and q = log n 

diff = max(diff, [x[i] - new x[i]]) 

x[i] = new x[i] 

endfor 

while diff  >  

end 

 

 

 

 

 MPI For Asynchronous System: 

 

Here, we use MPI for asynchronous system as a terms of 

again matrix multiplication in different manner. The 

pseudo-code are given below: 
/* MATRIX MULTIPLICATION PROGRAM USING MPI*/ 

#include<stdio.h> 

#include<conio.h> 

#define NUM_ROWS_A 4 

#define NUM_COLUMN_A 4 

#define NUM_ROWS_B 4 

#define NUM_ COLUMN _B 4 

#define MASTER_TO_SLAVE_TAG 1 

#define SLAVE_TO_MASTER_TAG 4 

void make AB ( ); 

void print Array( ); 

int rank; 

int size; 

int i, j; 

double mat_a [NUM_ROWS_A] [NUM_COLUMN_A] 

double mat_b [NUM_ROWS_B] [NUM_COLUMN_B] 

double mat_result [NUM_ROWS_A] [NUM_COLUMN_B] 

double start_time; 

double end_time; 

int low_bound; 

int upper_bound; 

int portion; 

MPI_Status status; 

MPI_Request request; 

int main (int argc, char *argv[ ]) 

{ 

MPI_lnit(&argc, &argv); 

MPI_comm_rank(MPI_comm_word, &size); 

/*MASTER INITIALIZES WORK*/ 

if (rank == 0) 

{ 

Make AB( ); 

Start_time = MPI_wtime( ); 

for(i= 1; i< size; i++) 

portion = (NUM_ROWS_A)/(size-1); 

low_bound = (i-1) * portion; 

if (((i+1) == size) && ((Num_ROWS_A%(size-1)) ! =0)) 

{ 

upper_bound = NUM_ROWS_A; 

} 

else 

{ 

upper_bound = low_bound  + portion; 

} 

MPI_isend(&low_bound,1,MPI_INT,i,MASTER_TO_SLAVE_TAG,MPI

_COMM_WORLD, &request); 

MPI_isend (&mat_a [low_bound] [0], (upper_bound - low_bound) * 

NUM_COLUMNS_A,MPI_DOUBLE,i,MASTER_TO_SLAVE_TAG+2,M

PI_COMM_WORLD, &request); 

} 

} 

MPI_Bcast(& mat_b, NUM_ROWS_B * NUM_COLUMN_B, 

MPI_DOUBLE,0,MPI_COMM_WORLD); 

if (rank>o) 

{ 

MPI_Recv(&low_bound,1,MPI_INT,i,MASTER_TO_SLAVE_TAG,MPI

_COMM_WORLD, &status); 

MPI_Recv(&upper_bound,1,MPI_INT,i,MASTER_TO_SLAVE_TAG,M

PI_COMM_WORLD, &status); 
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MPI_isend (&mat_a [low_bound] [0], (upper_bound - low_bound) * 

NUM_COLUMNS_A,MPI_DOUBLE,0,MASTER_TO_SLAVE_TAG+2,

MPI_COMM_WORLD, &status); 

for(i= low_bound; i< upper_bound; i++) 

{ 

for(j= 0; j< NUM_COLUMNS_B; j++) 

mat_result[i][j]+= (mat_a [i][j] * mat_b [i][j]  ); 

} 

} 

} 

MPI_isend(&low_bound,1,MPI_INT,0,SLAVE_TO_MASTER_TAG,MPI

_COMM_WORLD, &request); 

MPI_isend(&upper_bound,1,MPI_INT,0,SLAVE_TO_MASTER_TAG+

1,MPI_COMM_WORLD, &request); 

MPI_isend (&mat_result [low_bound] [0], (upper_bound - low_bound) * 

NUM_COLUMNS_B,MPI_DOUBLE,0,SLAVE_TO_MASTER_TAG+2,

MPI_COMM_WORLD, &request); 

} 

/*MASTER GATHERS PROCESSED WORK*/ 

if (rank == 0) 

{ 

for(i= 1; i< size; i++) 

MPI_Recv(&low_bound,1,MPI_INT,i,SLAVE_TO_MASTER_TAG+1,M

PI_COMM_WORLD, &status); 

MPI_Recv(&upper_bound,1,MPI_INT,i,SLAVE_TO_MASTER_TAG+1,

MPI_COMM_WORLD, &status); 

MPI_Recv (&mat_result [low_bound] [0], (upper_bound - low_bound) * 

NUM_COLUMNS_B,MPI_DOUBLE,i,SLAVE_TO_MASTER_TAG+2,M

PI_COMM_WORLD, &request); 

} 

end_time – MPI_wtime( ); 

printf(“\n Runing Time = %f\n\n”, end_time_start_time); 

print Arrray( ); 

} 

MPI_Finalize( ); 

return 0; 

} 

void make AB ( ); 

{ 

for(i= 0; i< NUM_ROWS_A; i++) 

{ 

for(j= 0; j< NUM_COLUMNS_A; j++) 

{ 

Mat_a[i][j] = i+j; 

} 

} 

for(i= 0; i< NUM_ROWS_B; i++) 

{ 

for(j= 0; j< NUM_COLUMNS_B; j++) 

{ 

Mat_b[i][j] = i+j; 

} 

} 

} 

void printarray( ); 

{ 

for(i= 0; i< NUM_ROWS_A; i++) 

{ 

printf(“\n”); 

for(j= 0; j< NUM_COLUMNS_A; j++) 

printf(“%8.2f”, mat_a[i][j]); 

} 

printf(“\n\n\n”); 

for(j= 0; j< NUM_COLUMNS_B; j++) 

printf(“%8.2f”, mat_b[i][j]); 

} 

printf(“\n\n\n”); 

for(i= 0; i< NUM_ROWS_A; i++) 

{ 

printf(“\n”); 

for(j= 0; j< NUM_COLUMNS_B; j++) 

printf(“%8.2f”, mat_result[i][j]); 

} 

printf(“\n\n”); 

} 

IV. CONCLUSION 

 
In this, we examine circulated calculation, for every 

processor, there is a situated of times at which the 

processor executes a few processing’s, some different 

times at which the processor sends a few messages to 

different processors, but some different times at which 

the processor gets messages from different processors. 

And, also represented message passing between gobal 

host to local host through interconnected physical 

medium. 
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