
IJSRSET151574 | Received: 16 October 2015 | Accepted: 21 October 2015 | September-October 2015 [(1)5: 315-323]

© 2015 IJSRSET | Volume 1 | Issue 5 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

315

Iteration in Asynchronous System
Ajitesh S. Baghel, Rakesh Kumar Katare

Department of Computer Science A. P. S. Univesity, Rewa, Madhya Pradesh, India

ABSTRACT

We present a couple of traditional iterative strategies for unravelling straight comparisons; such routines are broadly

utilized, particularly for the arrangement of substantial issues, for example, those emerging from the discrimination

of direct fractional differential mathematical statements. We depict the iterative or backhanded systems, which

begin from a rough guess to the genuine arrangement and if concurrent, infer a grouping of close estimates the cycle

of reckonings being rehashed till the obliged precision is gotten.

Keyword: asynchronous system, P-RAM, MPI, Parallel, Distributed, Interconnection network.

I. INTRODUCTION

In this chapter, we present a couple of traditional

iterative strategies for unraveling straight comparisons;

such routines are broadly utilized, particularly for the

arrangement of substantial issues, for example, those

emerging from the discrimination of direct fractional

differential mathematical statements. We depict the

iterative or backhanded systems, which begin from a

rough guess to the genuine arrangement and if

concurrent, infer a grouping of close estimates the cycle

of reckonings being rehashed till the obliged precision is

gotten. It implies that in iterative routines the measure of

processing relies on upon the precision obliged and we

have additionally talked about JACOBI and Gauss-

Seidel calculation with P-RAM and MPI Programming.

II. METHODS AND MATERIAL

A. Method Iteration

Given a distributed algorithm, for each processor, there

is a set of times at which the processor executes some

computations, some other times at which the processor

sends some messages to other processors, and yet some

other times at which the processor receives messages

from other processors[4]. The algorithm is termed

synchronous, in the sense of the Preceding subsection, if

it is mathematically equivalent to one for which the

times of computation, message transmission, and

message reception are fixed and given a priori. We say

that the algorithm is asynchronous if these times can

vary widely in two different executions of the algorithm

with an attendant effect on the results of the computation

[4]. The most extreme type of asynchronous algorithm is

one that can tolerate changes in the problem data or in

the distributed computing system, without restarting

itself to some predetermined initials conditions. Iterative

methods, also known as trial and error methods, are

based on the ideas of successive approximation. They

start with one or more initial approximation to the root

and obtain a sequence of approximations by repeating a

fixed sequence of steps till the solution with reasonable

accuracy is obtained. Iterative methods, generally, give

one root at a time. Iterative methods are very

cumbersome and time-consuming for solving non-linear

equations manually. However, they are best suited for

use on computers, due to following reasons:

 Iterative methods can be concisely expressed as

computational algorithms.

 It is possible to formulate, using trial and error,

algorithms which tackle a class of similar problems.

For instance a general computational algorithm to

solve polynomial equations of order n (where n is an

integer) may be written.

 Routing errors are negligible in trial and error

procedures compared to procedures based on closed

form solutions.

In computational mathematics an iterative method is a

mathematical procedure that generates a sequence of

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

316

improving approximate solutions for a class of problems.

A specific implementation of an iterative method,

including the termination criteria, is an algorithm of the

iterative method. An iterative method is called

convergent if the corresponding sequence converges for

given initial approximations. A mathematically rigorous

convergence analysis of an iterative method is usually

performed; however, heuristic-based iterative methods

are also common.

A method uses iteration if it yields successive

approximations to a required value by repetition of a

certain procedure.

B. Iteration Steps

An "iterative" process can be explained by the flowchart

given in Fig. 1. There are four parts in the process,

namely, initialization, decision, computation and update.

The functions of the four parts are as follows: [7]

1. Initialization: The parameters of the function and a

decision parameter in this part are set to their initial

values. The decision parameter is used to determine

when to exit from the loop.

2. Computation: The required computation is

performed in this part.

3. Decision: The decision parameter is to determine

whether to remain in the loop.

4. Update: The decision parameter is updated, and a

transfer to the next iteration results.

Figure: 1.1 Iteration Explain by flow chart [6 &7]

Lemma 1: Iteration is geometry of nature and its

represent to geometry progration.

Proof: for i = 1 to x

 for j= 1 to x

 y = x
2

Where, x
2
 is representation of geometry progration.

C. P-Ram Model

The P-RAM model allows parallel algorithm designers

to treated processing power as an unlimited resource,

much as programmers of computers with virtual

memory are allowed to treat memory as an unlimited

resource. The P-RAM model is unrealistically simple; it

ignores the complexity of interprocessor communication.

Because communication complexity is not an issue, the

designer of P-RAM algorithms can focus on the

parallelism inherent in a particular computation.

A P-RAM model consists of a control Unit, global

memory, and an unbounded set of Processors, each with

its own private memory (Fortune and Wyllie 1978) [25]

(see figure: 1.1). Although active processors execute

identical instructions, every processor has a unique

index, and the value of a processor's index can be used

to enable or disable the processor or influence which

memory location it accesses.

A P-RAM computation begins with the input stored in

global memory and a single active processing element.

During each step of the computation an active, enabled

processor may read a value from a single private or

global memory location, perform a single RAM

operation, and write into one local or global memory

location. All active, enabled processors must execute the

same instruction, albeit on different memory location.

The computation terminates when the last processors

halts.

E

n

Initializ

ation

Decisi

on

Update Computat

ion

E

xit

Done

Not Done

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

317

Figure: 1.2 Advance Representation of PRAM Model

Explanation: Let xl, xp, xl be subsets of Euclidean

spaces R
n

i,…., R
np

 respectively. Let n = nl +….. + np, and

let x R
n
 be the Cartesian product X =

p
i=1Xi.

Accordingly, any x R
n
is decomposed in the from x =

(xi,…., x
p
), we write each xi belonging to R

n
i. For I

1…..p, let fi :Xxi be a given function and let f : XX

be the function defined by f(x) = (fi(x),……,fp(x)) for

every x X. We want to solve the fixed - point problem

x = f(x). To this end we will consider the iteration

x: = f(x)

We will also consider the more general iteration-

otherwise

1

i

i

x

lifif
x (1.1)

Where i is a subset of the component index set {l,…..,

p}, which may change from one iteration to the next.

Let the system be given by

allxl + al2x2 + a13x3+………….+ alnxn = bl

a2lxl + a22x2 + a23x3+…………+ a2nxn = b2

a3lxl + a32x2 + a33x3+…………..+ a3nxn = b3

 …………..

 …………..

anlxl + an2x2 + an3x3+………….. + annxn bn (1.2)

In which the diagonal elements aij do not vanish, if this

is not the case, then the equation should be rearranged so

that this condition is satisfied.

Now we can rewrite the above systems as follow -

n

22

2
3

22

23
1

22

21

22

2
2 x................

a

a

a

b

a

b

a

a
xxx n

n

33

3
2

33

32
2

33

3l

33

3
3 x................

a

a

a

b

a

b

a

a
xxx n

...

..

...

1-n
1

2

nn

n2
2

nn

nl

nn

n x................
a

a

a

b

a

b

nn

nn
n

a

a
xxx

 (1.3)

Now, we can write the above equation in the form of

matrix. Let A be a n*n matrix, let b be a vector in R
n
,

and consider the system of linear equations-

Ax =b

Where, x is an unknown vector to be determined. We

assume that A is invertible, so that Ax =b has a unique

solution. We write the i
th
 equation of the systems Ax = b

as

n

ij

ijij bxa

Where aij are the entries of A; also, xj and bi are the

components of x and b, respectively, we assume that aii

 0 and solve for xi to obtain –

ij

ijij

ij

i bxa
a

x
1

 (1.4)

If all the components xj ,j i, of the solution of Ax = b

are known, the remaining component xi can be

determined from Eq.(1.4). If instead some approximate

estimates for the components xj, j i, are available, then

we can use Eq. (1.4) to obtain an estimate of xi. This can

be done for each component of x simultaneously,

leading to the following algorithm:

o Iteration in Jacobi Algorithm

In this, we start with some initial vector x(0) R
n
,

evaluate x(t), t = 1,2, ….. using the iteration -

xi (t + 1) =

ij

ijij

ii

btxa
a

)(
1

 (4.5)

The Jacobi algorithm produces an infinite sequence {x(t)}

of elements of R
n
. If this sequence converges to a limit x,

then by taking the limit of both sides of Eq. (1.5) as i

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

318

tend to infinity, we see that x satisfies Eq. (1.4) for each

i, which is equivalent to x being a solution of Ax = b of

course; it is possible that the algorithm diverges.

In the above algorithm, each component of x(t + 1) was

evaluated based on Eq. (1.4) and the estimate x(t) of the

solution. If this algorithm is executed on a serial

computer, by the time that xi (t + 1) is evaluated, we

already have available some new estimates xj (t + 1) for

the components of x with index j smaller than i. It may

be preferable to employ these new estimates of xj, j < i

when updating xi. This leads to the next (gauss-seidel)

algorithm. The above Jacobi method can be explained

easily with this following example:

Example: Find the solution, using Jacobi method to

three decimals, of systems.

83x + 11y - 4z = 95 (1)

7x + 52y + 13z =104 (2)

3x + 8y + 29z =7 (3)

The above equation (1) can be written as follows;

83x =95 - 11y + 4z

x =

83

11

83

95
 + (4/83)z

xn+l =
}41195{83

1

nn zy
 (4)

The equation (2) also may be written as follows:

52y = 104 - 7x - 13z}

yn+l =
}137104{52

1

nn zx
 (5)

The equation (3) may be written are as follows:

29z =71 - 3x - 8y

zn+l =
}8y - 3x - 29{71

1

nn

 (6)

Now we take initial values of x, y and z, so take initial

values;

x0 = y0 = z0 = 0

Now we calculate the first iteration:

Iteration – I:

xn+l =
}4z + 11y - 83{95

1

nn

 (4)

Here n = 0, so

xl =
0} * 4 + 0 * 11 - 83{95

1

83

95

xl =1.1445783

yl = 1/52{104 - 7 * 0 - 13 * 0}

52

104

= 2

0} * 8 - 0 * 3 - 29{71

1
1 z

= 71/29

= 2.4482758

Now we calculate the second iteration, in this we use the

recent value of xl, yl and zl.

Iteration – II:

Then here n = 1, so

x2 = 1/83{95 – 11yl + 4z1}

 = 1/83{95 - 11 * 2 + 4 * 2.4482758}

x2 =.9975072

y2 =1/52{104 – 7x113z1}

2.4482758} * 13 - 1.1445783* 7 - 52{104

1

= 1.2338532

z2 =1/29{71 – 3xl – 8yl}

=1/29{71 - 3 * 1.1445783 - 8 * 2}

 =1.77814707

Iteration – III:

Here n =2

x3 =1/83{95 – 11y2 + 4z2}

}1.77814707 * 4 + 1.2338532 * 11 - 83{95

1

 = 1.0667494

y3 =1/52{104 - 7xz - 13zz}

 = 1/52{104 - 7 * .9975072 - 13 * 1.77814707}

 = 1.4211834

z3 =1/29{71 - 3xz - 8yz}

 =1/29{71 - 3 * .9975072 - 8 * 1.2338532}

 =2.0047121

Now, the value of three x, y and z are repeated so we

may stop.

So, the value of x, y and z are as follows:

x =1.057

y =1.367

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

319

z =1.961

Iteration – IV:

Here n=3

x4 =1/83{95 – 11y3 + 4z3}

=1/83{95 - 11 * 1.4211834 + 4 *

2.0047121}

= 1.0528413

y4 = 1/52{104 – 7x3 - 13z3}

= 1/52{104 - 7 * 1.0667494 - 13 * 2.0047121}

= 1.35522109

z4 = 1/29{71 – 3x3 – 8y3}

=1/29{71 - 3 * 1.0667494 - 8 * 1.4211834}

= 1.9458718

Iteration – V:

Now n = 4

xs =1/83{95 – 11y4 + 4z4}

=1/83{95 - 11 * 1.35522109 + 4 * L9458718}

=1.0587476

y5 =1/52{l04 – 7x4 - 13z4}

= 1/52{104 - 7 * 1.0528413 - 13 * 1.9458718}

= 1.3718034

z5 = 1/29{71 - 3x4 – 8y4}

=1/29{71 - 3 * 1.0528413 - 8 * 1.35522109}

= 1.9655071

The pseudo-code of sequential Jacobi algorithm is as

follows: [M.J. Quinn, 1994]

Input

n {size of linear system}

 {convergence criterion}

a[l ...n][l…..n] {coefficient of linear equation}

b[l…..n] {constant associated with equation}

Output

x[l...n]{old Estimate of solution vector}

Global

new x[l...n] {new estimate of solution vector}

diff{maximum change of any element of solution}

i,j {loop indices}

Begin

{Estimate values of elements of x}

for i 1 to n do

x[j]
a[i][i]

]1[b

end for

{Refine estimates of x until value converge}

do

diff a

for i 1 to n do

new x[i] b[i]

for j 1 to n do

if j then

new x[i] newx[i] - a[i] [j] * x[j]

endif

endfor

newx[i]
a[i][j]

newx[i]

endfor

for i 1 to n do

diff max (diff, [x[i] - newx[i])

x[i] newx[i]

endfor

while diff >

end

Hence, it is a sequential implementation of the Jacobi

Algorithm.

o Iteration in Gauss-Seidel Algorithm:

Starting with some initial vector xe(0) R
n
, evaluate

x(t), t = 1,2, ... using the iteration-

xi (t + 1) = -

 ij ij

ijiijii btxatxa)()1(
aii

1
 (3)

In above equation, we first update xl, then x2, etc. It is

equally meaningful to start by updating xn, then xn-1 and

proceed backwards, with xl being updated last. Any

other order of updating is possible. Different orders of

updating may produce substantially different results for

the same system of equation.

The pseudo-code of Sequential Gauss Seidel method is

as follow:

Sequential_GS

input A, b, x
(0)

, tolerance

for k = 0 to k_max do the following

for i =1….., n

sum = 0

for j = 1,2,.... i - 1

sum = sum + aij xj
k

end j

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

320

xi
(k+l)

 = (bi - sum)/aii

end i

if x
(k+l)

 - x
(k)
< tolerance then output the solution,

stop

end k

end Sequential_GS

Hence, it is a sequential implementation of Gauss-Seidel

method.

D. Message Passing

It is a concept from computer science, i.e. used

extensively in the design and implementation of modern

software applications. This concept is used with

software and hardware both. Generally, message passing

is the indication of passes message from n different

nodes, by wired or wireless medium. Another words, it

is a way of invoking behavior through some

intermediary service or infrastructure of process.

According to the concepts of this, when more then to

autonomous machines, which are intermediary

connected with each others, and passes bundles and

packets through established channel or link this think is

known as “Message Passing”.

E. Discrete Vs Continuous Massege Passing

We explain the discrete and continuous message passing,

as follows:

 Discrete Message Passing: It is possible for the

receiving object to be busy or not running when the

requesting object sends the message. It requires

additional capabilities for storing and retransmitting

data for systems that may not run concurrently. In

this, all the capabilities that naturally occur when

trying to synchronize system and data are handled

by an intermediary level of software. With discrete

message passing the sending system does not wait

for a response. It simply sends the data bus and the

buses stored the message and returns the result when

it is available.

 Continuous Message Passing: In this, message

passing occurs between objects that are running at

the same time. It based on typically object-oriented

programming, such as: JAVA and Smalltalk.

Message Passing: It is less complex; the sender

sends a message and gets a response the same as

simply invoking a function or procedure call.

Continuous systems require the sender and receiver

to wait for each other to transfer the message.

III. RESULTS AND DISCUSSION

A. Message Passing Models

The message passing technologies have various types of

modes. Either some are conceptual or some are practical.

Here we explain several models of MPI as per my

knowledge.

 Mathematical Model:

There are two prominent mathematical models of

message passing, as:

1. Actor model: This model was inspired by physics

(include relativity and quantum physics). It was also

influenced by the programming languages like as:

LISP, Simula63 and Smalltalk[2]. Its development

was "motivated by the prospect of highly parallel

computing machines consisting of dozens, hundreds

or even thousands of independent microprocessors,

each with its own local memory and

communications processor, communicating via a

high-performance communications network [2].

The actor model in computer science is a

mathematical model of concurrent computation that

treats "actors" as the universal primitives of

concurrent computation, in response to a message

that it receives; an actor can make local decisions,

create more actors, send more messages, and

determine how to respond to the next message

received. The actor model originated in 1973 [1]. It

has been used both as a framework for a theoretical

understanding of computation and as the theoretical

basis for several practical implementations of

concurrent systems. An actor is a computational

entity that, in response to a message it receives, can

concurrently:

 Send a finite number of messages to other actors.

 Create a finite number of new actors.

 Designate the behavior to be used for the next

message it receives.

There is no assumed sequence to the above actions

and they could be carried out in parallel. The Actor

model enabling asynchronous communication and

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

321

control structures as patterns of passing messages

[3]. Recipients of messages are identified by address,

sometimes called "mailing address". Thus an actor

can only communicate with actors whose port

addresses it has. The Actor model is characterized

by inherent concurrency of computation within and

among actors, dynamic creation of actors, inclusion

of actor addresses in messages, and interaction only

through direct asynchronous message passing with

no restriction on message arrival order.

2. Pi Calculus: In theoretical computer science, the π-

calculus (or pi-calculus) is a process calculus. The

π-calculus allows channel names to be

communicated along the channels themselves, and

in this way it is able to describe concurrent

computations whose network configuration may

change during the computation[3]. The π-calculus is

elegantly simple clarification is needed yet very

expressive[1]. Functional programs can be encoded

into the π-calculus, and the encoding emphasizes the

dialogue nature of computation, drawing

connections with game semantics. Extensions of the

π-calculus, such as the π-calculus and applied π,

have been successful in reasoning about

cryptographic protocols.

Definition: The π-calculus belongs to the family of

process calculi, mathematical formalisms for

describing and analyzing properties of concurrent

computation. In fact, the π-calculus, like the λ-

calculus, is so minimal that it does not contain

primitives such as numbers, Booleans, data

structures, variables, functions, or even the usual

control flow statements (such as if-then-else, while).

 B. Parallel Processing Model For Distributed

System

In here, machine architecture represents the

programming model, we explain figure 4.3 in our words.

 Each processor Pi has its own memory and

clock.

 Local memory is not accessible by anywhere

through the other processors.

 All processors Pi are connected by a special

physical medium i.e., either network of

communication or other communication device

which are available in present scenario.

Figure: 1.3 Parallel MPI for Distributed System In

architecture

Data and information must be explicitly distributed by

the programmer; Communication of processors (i.e.,

exchanging data’s in between processors) is achieved by

MPI.

According to above architecture we refers pseudo-code

for adding two vector by OPEN MPI:

Source code:
#include “mpi.h” /* Include MPI header file */!

int main (int argc, char **argv)

{

int rnk, sz, n, I, info;

double *x, *y, *buff;

n = atoi (argv[1]); /* Get input size */!

/* Initialize threaded MPI environment */

MPI_Init_thread (&argc, &argv, MPI_THREAD_FUNNELED, &info);

MPI_Comm_size(MPI_COMM_WORLD, &sz); /* Find out how many

MPI procs */

chunk = n / sz; /* Assume sz divides n exactly */

MPI_Scatter(buff,chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0,MPI_

COMM_WORLD);

MPI_Scatter(&buff[n],chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0,M

PI_COMM_WORLD);

#pragma omp parallel for private(i,chunk) shared(x, y)

for (i=0; i<chunk; i++) x[i] = x[i] + y[i];!

MPI_Gather(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_

COMM_WORLD);

MPI_Finalize();

}

B. Representation of Array Pattern of Processing

Elements (P.E.): [5,8]

Consider a case of three dimensional array patterns with

n
3
 = 2

3q
 (Processing Elements) PEs [E.D. Dekel,

Nassimi, S. Sabni, M.J. Quinn.]. Conceptually this PEs

may be regarded as arranged, in n n n array pattern.

If we assume that the PEs are row major order, the PE

(i,j, k) in position (i,j, k) of this array has 2 index in
2
 + jn

+ k (note that array indices are in the range [0, (n - 1)].

Hence, if r3q-l r0 is the binary representation of the PE

position (i,j, k) then i = r3q-l…. rzq , j = rzq-l…. rq,k = rq-

l……. r0 using A(i,j, k), B(i,j, k) and C(i,j, k) to

https://en.wikipedia.org/wiki/Concurrent_computation
https://en.wikipedia.org/wiki/Concurrent_computation
https://en.wikipedia.org/wiki/Game_semantics
https://en.wikipedia.org/wiki/Cryptographic_protocol

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

322

represent memory locations in P(i,j, k), we can describe

the initial condition for matrix multiplication as A(0,j,

k) = Ajk, B(0,j, k) = Bjk, 0 < = j < k,0 <= k < n Ajk and

Bjk are the elements of the two matrices to be multiplied.

The desired final configuration is C(0,j, k) = CU, k), 0

<= j < n,0 <= k < n

Where,

Cjk =

1

0

n

i

 AijBik

The algorithm has three distinct phases. In the first,

element of A & B are distributed over the n PEs so that

we have A(l,), k) = A and B(l,j, k) = B. In the second

phase the products C(l,j, k) = A(l,), k) * B(l,j, k) = AnBn

are computed. Finally, in third phase the Cjk are

computed. The details are spelled out in Dekel, Nassimi

and Sahni 1981 [E.D. Dekel, Nassimi, S. Sabni,]. In this

procedure all PE references are by PE index (Recall that

the index of PE (i, j,k) as in + jn + k).

 P-RAMf Asyncheonous System: [5,8]

Begin (1)

Repeat log n times do

for all (ordered) pair (i,j, k), 0 < k ≤ n, 0 < i,j, k ≤ n and q = log n in

parallel do

a(22q i + 2qj + k) = a(i, j)

a(22qi + zqj + k) = a(i, i)

b(22qi + zqj + k) = b(i)

end for

for all (order)pair (i,), k), i < k < n, i > 0,j > i and q = log n

x(j) =]][[

][

iia

ib

end for

[Refine estimates of x untill value converge]

Repeat log n times do

diff = 0

for all (order)pair (i,), k), i < k < n, i > 0,j > i and q = log n

new x[i] =b[i]

for all (order)pair (i,), k), i < k < n, i > 0,j> i and q = log n

if j i then

new [x] =new x[i] - a[i][j] * x[i]

end if

end for new x [i] = new]][[

][

iia

ix

end for

for all (order)pair (i,j, k), i < k < n, i > 0,j > i and q = log n

diff = max(diff, [x[i] - new x[i]])

x[i] = new x[i]

endfor

while diff >

end

 MPI For Asynchronous System:

Here, we use MPI for asynchronous system as a terms of

again matrix multiplication in different manner. The

pseudo-code are given below:
/* MATRIX MULTIPLICATION PROGRAM USING MPI*/

#include<stdio.h>

#include<conio.h>

#define NUM_ROWS_A 4

#define NUM_COLUMN_A 4

#define NUM_ROWS_B 4

#define NUM_ COLUMN _B 4

#define MASTER_TO_SLAVE_TAG 1

#define SLAVE_TO_MASTER_TAG 4

void make AB ();

void print Array();

int rank;

int size;

int i, j;

double mat_a [NUM_ROWS_A] [NUM_COLUMN_A]

double mat_b [NUM_ROWS_B] [NUM_COLUMN_B]

double mat_result [NUM_ROWS_A] [NUM_COLUMN_B]

double start_time;

double end_time;

int low_bound;

int upper_bound;

int portion;

MPI_Status status;

MPI_Request request;

int main (int argc, char *argv[])

{

MPI_lnit(&argc, &argv);

MPI_comm_rank(MPI_comm_word, &size);

/*MASTER INITIALIZES WORK*/

if (rank == 0)

{

Make AB();

Start_time = MPI_wtime();

for(i= 1; i< size; i++)

portion = (NUM_ROWS_A)/(size-1);

low_bound = (i-1) * portion;

if (((i+1) == size) && ((Num_ROWS_A%(size-1)) ! =0))

{

upper_bound = NUM_ROWS_A;

}

else

{

upper_bound = low_bound + portion;

}

MPI_isend(&low_bound,1,MPI_INT,i,MASTER_TO_SLAVE_TAG,MPI

_COMM_WORLD, &request);

MPI_isend (&mat_a [low_bound] [0], (upper_bound - low_bound) *

NUM_COLUMNS_A,MPI_DOUBLE,i,MASTER_TO_SLAVE_TAG+2,M

PI_COMM_WORLD, &request);

}

}

MPI_Bcast(& mat_b, NUM_ROWS_B * NUM_COLUMN_B,

MPI_DOUBLE,0,MPI_COMM_WORLD);

if (rank>o)

{

MPI_Recv(&low_bound,1,MPI_INT,i,MASTER_TO_SLAVE_TAG,MPI

_COMM_WORLD, &status);

MPI_Recv(&upper_bound,1,MPI_INT,i,MASTER_TO_SLAVE_TAG,M

PI_COMM_WORLD, &status);

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

323

MPI_isend (&mat_a [low_bound] [0], (upper_bound - low_bound) *

NUM_COLUMNS_A,MPI_DOUBLE,0,MASTER_TO_SLAVE_TAG+2,

MPI_COMM_WORLD, &status);

for(i= low_bound; i< upper_bound; i++)

{

for(j= 0; j< NUM_COLUMNS_B; j++)

mat_result[i][j]+= (mat_a [i][j] * mat_b [i][j]);

}

}

}

MPI_isend(&low_bound,1,MPI_INT,0,SLAVE_TO_MASTER_TAG,MPI

_COMM_WORLD, &request);

MPI_isend(&upper_bound,1,MPI_INT,0,SLAVE_TO_MASTER_TAG+

1,MPI_COMM_WORLD, &request);

MPI_isend (&mat_result [low_bound] [0], (upper_bound - low_bound) *

NUM_COLUMNS_B,MPI_DOUBLE,0,SLAVE_TO_MASTER_TAG+2,

MPI_COMM_WORLD, &request);

}

/*MASTER GATHERS PROCESSED WORK*/

if (rank == 0)

{

for(i= 1; i< size; i++)

MPI_Recv(&low_bound,1,MPI_INT,i,SLAVE_TO_MASTER_TAG+1,M

PI_COMM_WORLD, &status);

MPI_Recv(&upper_bound,1,MPI_INT,i,SLAVE_TO_MASTER_TAG+1,

MPI_COMM_WORLD, &status);

MPI_Recv (&mat_result [low_bound] [0], (upper_bound - low_bound) *

NUM_COLUMNS_B,MPI_DOUBLE,i,SLAVE_TO_MASTER_TAG+2,M

PI_COMM_WORLD, &request);

}

end_time – MPI_wtime();

printf(“\n Runing Time = %f\n\n”, end_time_start_time);

print Arrray();

}

MPI_Finalize();

return 0;

}

void make AB ();

{

for(i= 0; i< NUM_ROWS_A; i++)

{

for(j= 0; j< NUM_COLUMNS_A; j++)

{

Mat_a[i][j] = i+j;

}

}

for(i= 0; i< NUM_ROWS_B; i++)

{

for(j= 0; j< NUM_COLUMNS_B; j++)

{

Mat_b[i][j] = i+j;

}

}

}

void printarray();

{

for(i= 0; i< NUM_ROWS_A; i++)

{

printf(“\n”);

for(j= 0; j< NUM_COLUMNS_A; j++)

printf(“%8.2f”, mat_a[i][j]);

}

printf(“\n\n\n”);

for(j= 0; j< NUM_COLUMNS_B; j++)

printf(“%8.2f”, mat_b[i][j]);

}

printf(“\n\n\n”);

for(i= 0; i< NUM_ROWS_A; i++)

{

printf(“\n”);

for(j= 0; j< NUM_COLUMNS_B; j++)

printf(“%8.2f”, mat_result[i][j]);

}

printf(“\n\n”);

}

IV. CONCLUSION

In this, we examine circulated calculation, for every

processor, there is a situated of times at which the

processor executes a few processing’s, some different

times at which the processor sends a few messages to

different processors, but some different times at which

the processor gets messages from different processors.

And, also represented message passing between gobal

host to local host through interconnected physical

medium.

V. REFERENCES

[1] Carl Hewitt; Peter Bishop; Richard Steiger (1973). "A

Universal Modular Actor Formalism for Artificial

Intelligence". IJCAI.

[2] William Clinger (June 1981). "Foundations of Actor

Semantics". Mathematics Doctoral Dissertation. MIT.

[3] Carl Hewitt. Viewing Control Structures as Patterns of

Passing Messages Journal of Artificial Intelligence. June

1977.

[4] A Calculus of Mobile Processes part 1 page 10, by R.

Milner, J. Parrow and D. Walker published in Information

and Computation 100(1) pp.1-40, Sept 1992.

[5] Katare, R.K., Chaudhari, N.S., “Study of topological

property of interconnection network and its mapping to

sparse matrix model”.

[6] Tremblay, J.P. and Manohar, R, “Discrete Mathematical

Structure with Applications to Computer Science”. 1997.

[7] Fortune,S; and J. Wyllie. 1978 Parallelelism in random

access machines, proceedings of the 10thAnnual ACM

Symposium on theory of computing, PP, 114-118.

[8] https//en.wikipedia.oer/wiki/could_computing

[9] Katare, R.K., Chaudhari, N.S., “Acomparative study of

Hypercube and perfect difference network for Parallel

and distributed system and its application to sparse linear

system.” Varahmihir journal of computer and information

sciences volume 2, Sandipani Academy, Ujjain, (M.P.)

India, p. 13-30,2007

[10] Katare, R.K., Chaudhari, N.S., “An attempt to map sparse

linear system on perfect difference network for Parallel

and distributed system.” Varahmihir journal of computer

and information sciences volume 2, Sandipani Academy,

Ujjain, (M.P.) India, p. 1-10,2008

